Statistical Mechanics of Irreversibility

Robert W. Zwanzig

LECTURE I
Part 1

The purpose of these lectures is to describe and ex-
plain some mathematical techniques that are useful in quan-
tum statistical mechanics., These techniques, not yet very
well known, are connected with the use of Liouville opera-
tors and projection operators. Their main illustration here
will be in the derivation of certain "master equations" of
interest in the theory of irreversible processes,

First, a quick survey of some background material
will be useful. This is connected with the following question,
The density matrix (operator) at time t ig p(t). Its

evolution is determined by the Hamiltonian operator

fI:Ho +>\‘}. (1)

where fio is some unperturbed Hamiltonia,n and M} is a per-
turbation. The strength of the perturbation is measured by
.

The unperturbed system H, may consist of non-inter-
acting particles, quasi-particles, etc.; it should have the
property that we can find its eigenvalues and eigenstates,

ﬁoln> = Enln> (2>
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We shall work in this unperturbed representation. The den-
sity matrix is

Pra(t) = <m|p(t) In> (3)
and the Hamiltonian is
Hmn =Em 6mn+>\vmn (4)

For simplicity we assume that E,, contains all diagonal con-
tributions, so that

The diagonal elements of § describe the occupation of
unperturbed states,

Pmm(t) = prob. of observing the system in state [m>
at time t, (6)

In the absence of a perturbation, Pum (t) is constant. This
can be seen from the equation of motion,

g{i: - i[H,p] ‘ (7)

9 Omn .
OPmn _ =1 ), (Hm1P1a = Pot Hin)
ot A

and, for the diagonal elements, on putting in Em Smn + AV,

{’—gift“—‘“.,=—i?(>xvml Pim - Pmt AVim) (8)
So if no perturbation, Pmm is constant in time.

With this long prelude, we can now state the problem
of interest: What is the time dependence of the occupation
probability pum (t) as a result of the perturbation A Vs ?

It turns out that there are at least two solutions to this
problem, The first one is obtained from the Liouville equa-
tion just written,

- i[H, f] (9)

The formal solution to this equation is as follows,
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B(t) = e tip(0) et (10)
so that
pun() = L5 )y 03 (0) (0" (11)

This determines in principle and exactly the desired time
dependence, in terms of the initial values,

The most common special case is where the density
matrix is initially diagonal,

Prmn (0) = pmm(o) Omn (12)

Then
Pam(t) = ) Pan (0) (13)

so that !

(e~itH )mn

I ( e-itf{ - 2
gives the probability of transition from a staten att= 0 to
a state m at t.
We shall return to this solution in a little while, First
we look at the other solution, This was given by Paulis

aprgr;(t) I~ Z [Wmn Pnn (t) - anpmm(t):l (14)

n

The coefficients W,,, are transition rates, given in the limit
of weak interaction by the '""Golden Rule, "

Wmn = 27T>\2 |an IZG(EH\ - En) (15)

ithout actually solving Pauli's master equation, we can

_-ee that its solutions are not identical with the exact solu-

tions. To do this we calculate the time derivatives at t = 0,
with the special initial condition

S pl'l(o) =1 l (16)
all other py, (0) = 0 S

Then the exact equation (8) is

<§g%>o = - 1; |i)\vlk plk(o) - M)lk(O) Vkl:]
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But Vi vanishes for k = 1 by the way we originally defined
the perturbation, and p,,(0) vanishes.for k= 1. Therefore
the whole RHS vanishes, or

Pul _ " 18
(% =0 (19

But we can calculate this also from the master equation,
<%}> o = E Wln pnn(o) - z Wnl Pn(o) (19)

Note that W,, vanishes for n= 1 and p_ (0) vanishes for
n # 1. Therefore

(%)0 - <§ Wn1>P11(0) (20)

The RHS cannot vanish because it contains a sum 2 Wn, pf
intrinsically positive quantities. Se we have a contradic-
tion,

In spite of this, the Pauli master equation is often near-
ly correct, We want to understand how this happens, and
what the limitations are.

114

THE STANDARD DERIVATION
To begin with, let's look at the customary derivatiqn of
Pauli's equation, It takes the form of a gain-loss equation

ApPmn(t) = net increase of occupation of state |m>
during initial At (21)
= gain in |m> - loss from [m>

The gain can come only from other states. This is ' obvi-
ously"

' .
gain in [m> = ), [prob. of transition from n to m during At]
n

% [occupation of [n> ]
_ Z' [Win At] X paa (t) (22)
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and the loss can come only from transitions to other states,

]
loss from |m> = (Z Wam At) X Pmm(t) (23)
Now we write
@ _ Ap
at =~ At (24)

and we get the master equation, To conclude the derivation
we must also get the ""Golden Rule, "

The derivation given by Schiff is typical of those intext-
books. It is based on first order perturbation theory., We
start with Equation (15), where

| (e % )., |* = prob. of transition from In>

initially to |m> at time t, (25)
Use the perturbation expansion
I - t ' . oA .
e HH | g-itile fo dt; e -it-t)H, AV e -itifo
higher ofders in A, (26)
As the general expansion theorem, note that
X . t . ~ N
e -ItH - g-itho_ § f dt, e “i(t-t)fe )y g -itfl (27)
0

This can be verified by differentiating, Eq. (26) is obtain-
ed by substituting

exp(-it;Ho) for  exp(-it;H)  on the RHS.

Now we take the (m, n) matrix element and do the time
integration. We restrict the discussion to transitions be-
tween different states, or m =n. Then

(e‘“f"’ )mn = e-itEmﬁmn =0 (28)
and
. 6
(eitH ). =i [ dt, e-ltt)E, (AV)mn e ihEn  (29)
]
e itwpg, 1

~AVmn ———— " X @-itE
mn w m

ma

1l




144 QUANTUM STATISTICAL MECHANICS

when
Wmn = Em - By (30)
We take the square; after some algebra, we get
K in® § mnt
L(e1tH Yo |2 = 407 | Vinnl? [—sl“—%w—— (31)
wmn
Let's call the quantity in square brackets
.21
A(w, t) zﬁlnz_zw_t__ (32)
w
Its shape is shown in Fig. 1
A
A —— 1 height = 5t°
1 ?‘2 .
(—3}-‘)2= ‘5;2= height
T
| » w
s width = »{’—
|
Figure 1
1. 2r¢ T
area NZt X —t——>§t
Actually,
i _ 33
%LI(%A((O, t) - 2 t 6(0)) ( )

So the transition probability from n to m in t is
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A% [V 17 A(w, t) +0(2%) (34)
and as t gets very long this approaches
= AN | Vi | 2 g t 6(Won ) (35)

So, for large t we get for the transition probability during t,

£ Winn

with our-~arlier '*Golden Rule't definition of Wun.

But: ow we have to understand how to interpret the
limit, -

(1) tis never actually infinite, so the delta function is
never exact. However, the area is always exactly pro-
portioned to t.

(2) The true energy eigenvalues are of the order of mag-
nitude.

(36)

=K unperturbed, m T 0 (}Lz)

(This comes from perturbation theory). !*Because
true total energy is conserved'' we expect that

E time, m

Em + 0(A%) = Eq + 0(A%)
or
Win = O(Az) (37)

for the physically possible transitions. This means that,

for small A,
Wmn t = 0(A%t) (38)

But for w to be inside the first peak of the function Mo, t),
we require

lwt] = 0(27)
or, for typical values of w,
0(A*t) < 0(27) = 0(1)
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So, by picking A%t small enough, even with A small and

t large, we are usually within the main peak of A(w,t),

(3) A third point in the standard derivation is to suppose
that the unperturbed spectrum is quite dense., For ex-
ample, in a many body system with N particles, the
number of states within any internal dw is of the order

Np(w)dw (40)

where p(w) is a density of states, of order (1) as
N — ., So, for large N, there will be many unperturb-
ed states within the range

Wmn = 0()\.2) (41)

These all have roughly the same unperturbed energy,
Let's now sum over these (final) states

2

)
@mp =0(3%)

= ) Ve l® A(@,t) (42)

Wmp=0(a%)

= J AW No(@w) D% [V 1> A(@pnn, 1)

[(e1tH )on |2

Now, suppose that p(w) and Vam are ''smooth!’ func-
tions of wy,, over the range

Wun = 0(A%)
Then, for large t we can replace the integral by
No (@) 42% | Vi |* [ d @i A(@p, 1) (43)
But the latter integral is known, exactly, so we get

= No (@) 2727 | Vam |2 X t
W inn

And we have here just another form of Wonn
In deriving the expression we used the following order
of magnitude estimates
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(1)

(2) tlarge

(3) A%t < 0(2n)

(4) wmn = 0(2*)

(8) p(w) =0(1) as N— o

Note especially the third estimate. This will come up
again in Van Hove's derivation,

Having found a transition probability proportioned to t,
we get a time independent transition rate,

1 :
rate = at (prob.) (45)

This concludes our survey of the old-fashioned de-
rivations of Pauli's master equations.

LECTURE I
Part 2
VAN HOVE'S CONTRIBUTIONS

Van Hove made two principal contributions to the mod-
ern theory of the master equation. His first (1955) was a
more careful and rigorous derivation of Pauli's equation,
for small X only. His later contribution (1957) and (1959)
was a generalization to higher orders in A, Let's consider

the first now.
We need the full perturbation expansion of (26), ob-

tained by iterating (27),
e_itf{ — e—itflu . i ftdt]_ e-i(t-tl)ﬁo A{]e-itlﬁn
t t 0 ) . ~ . N ~ S
+ (_i)z f dtlf dtz e-l(t-tl)Ho )\‘Ve‘l(tl‘tz)ﬂu A'Ve'ltzﬂo
0 0

(46)
+0 (2%)
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And, we need the square of the expansion, or
I(e-itﬁ Yean 12 = (eitfx )nm(e-itf{)@ (47)

Any term in the expansion of the product can be indicated
by a graph of the following soxt,
AV AV AV AV AV AV AV AV
0—0——0— 0 —0 0 o -0

n

O

n

B —30

This particular one shows 5th order from the left and 3rd
order from the right. The graph needed in the original Pauli
theory is just

—— 00—
n 1 n
m

To the next order we get (for n = m)

n m 1 n m n
O Q) + o—0—-0—0
1 T
and in the fourth order,
n m n n m n n m n
¢-—0—"~0—0—o0 + 0—O—0—0—0 + 0—0——0—0—0
T T T

Now Van Hove observed that, for reasonable interactions of
of the sort that we have had in mind all along, whenever one
has a combination like

n n n n n n
0 0 - or 0—0—0——0 Or 0—-90—-0—"0—o0

where all the interior indices are different from each other
and different from n, then the integral gives asymptotically
a factor t.

The reason for this is just the same as we saw in the
earlier discussion: one gets a function of time that looks
asymptotically like t 6(w), where the & function is not real-
ly infinitely sharp, but only nearly so.

7~
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Note that the second order term has the character:

n m n
o—o0—0 ~ At

In third order we can have only

nmanrnlmnNkst

T T

In fourth order, however, we get the possibility of

o oo ~ (A%t)®
n T n 1 n

In sixth order we can get

0_—0_0—_%’1___0__0__0 ~ (7\2t)3
n n T n n

And so on,
The important point here is that higher powers of t will
occur, in fact the whole series looks asymptotically like

12 = () A%t + () APt+ () nt+...
+ (Y202 + ()2 +... (48)
()% + ()P

Van Hove noticed that the limit
A= 0 At = constant (49)

t— o

eliminated all but the set of powers of A*t. In the limit,
which is just like the one we used earlier,

I 12 = ()%t + () (P2 + () (A1) .. (50)

He then observed that upon differentiation,
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d iy
d_t_l(e itH )mn lz

(51)
] N T “
= 2 Wnl I (e_“H )lml2 = 2 Wln I (e-itH )nm'2
1
so that if we start out in the particular state m, and
Pun (£) = | (& 71tH ) |2 (52)
we get
_d_ggm :~zl‘/(“,nlpu - W“_pnn) (53)

But because of superpostion of initial conditions, the result,
not containing m, is in fact independent of the choice of
initial state,
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LECTURE 11
Part 1

The second lecture will be devoted to Liouville operator
techniques in quantum statistical mechanics.

First, we make a table of the standard notations. The
" Liouville equation!' is

PO _ i, p(y)

Bp;nix:\(t) . 12_) (Hu1Pim (t) = Pmi(t) Hin)

The formal solution is
o(t) = e-itﬁ 5(0) e+itf{

Pon (V) = ;Z (enith) p (0) (e"H),

Resolvents and Laplace transforms: sometimes one
wants to work with the Laplace transform of the density
matrix.

Define 0

8(s) = J dte™p(y)
151
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The transform of the equation of motion of fis
s8(s) - p(0) = - i[H, g(s)]

S8mn (8) = Pra (0) = = 1 ) [Hyi€1n(8) = Guma(8) Hyn]

The latter are linear equations for gm; (s) which can in
principle be solved for g. The Laplace transform can be
written by means of resolvents also, Let

1

R(2) =
(2) H-1zl

Run (2) = t(ﬂ - Zi)ml]mn

Note that the singularities of R come at the (real) eigen-
values of H, So,

titg

i HA 1 ;6 e
eilt = e dZ
2’]71 7 - H

=“—”‘93d *1tZA

where the contour encloses the part of the real axis occu-
pied by the exact eigenvalues of H.
Then

o]

= fo dt e et p(0) 9Sdz '™ R(z)

_1 2 - al z : 0 A
= m QSdZ j(;dt (S st ei ¢ e-lHtﬁ(O) R(Z)

= - féal;r—i- 56 dz.- i f{(z - is) (0) R(z)

where the integration has to be taken around the poles of
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R(z) only. So
1 A . A
&(s) =5~ $dz R(z - i) 6(0) R(z)

gives the Laplace transform of the density matrix in terms
of Resolvents.

This equation is equivalent to the starting point of Van
Hove's general derivation of the master equation. The only
difference is that he uses Fourier transforms instead of
Laplace transforms,

The inversion of a Laplace transform is

€+ico

ot ———f ds e* g(s)

€-ioo

with a contour to the right of allsingularitiesof g(s).
Van Hove does a perturbation expansion on the two re-
solvents and then collects terms and inverts the transform.
Now we want to rewrite all these formulas in the
"1 jouville Operator'' notation.

W i [B, A(D] = - iLAt)

where (for arbitrary operator A)

A~ A A

= LA=[8, A]
This is a linear operator that turns an operator Ainto a new
operator B.

With subscripts,

9P
8p Zmeﬂ‘pm"

Lmn mf ' Hmm' ﬁnn' = Hn' n Gmm'
*
= Hmm' 6nn' - Gmm' (H )nn|

The operator L. can be regarded as a tetradic operator
(four subscripts). The multiplication rule for tetradics is
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(Lle)mnm'n' =Zk‘/ 21 (Ll)mnkl(Lz)klm'n'

The identity tetradic is

(1) mnmt ot = St Oant

so that

(1 ! A)mn= z Z (1)mnm?n' Agw = A

mt nt

and
(1 L) pnmt ot = Lisunntn
Evidently tetradics behave much like matrices. Infact,
one can reduce their algebra to that of ordinary matrices by
the following trick.
We start by representing operators by matrices
A— A

Next, we pick some ordering sequence for the subscripts,
for example

@= 1l+(m, n) = (11)
a= 2<«=(m,n)=(12)
a= 3+(m, n) = (21)
a= 4-(m, n) = (13)
a= 5«(m, n) = (22)
a= 6-+-(m,n) = (31)
a= Te=(m, n) = (14)

= 8«—(m, n) = (23)
= 9-»-»(1’!1, n) = (32)
a =10 —(m, n) = (41)
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So we identify

A Am —+A (o ~'"vector A"
Then the formula

B = LA

can be written as

[«e]
B =, LiaypAwm (¢=1,2,3,...)
=1

so that Ly, (s behaves like a matrix of two subscripts.
This means that (with due caution!) the algebra of L
can be reduced to the algebra of matrices,
Now let's return to Liouville equation,

o .
3 iLA(t)

This has the solution
(1) = etitt p(0)
where

-itL &

e is a tetradic operator,

Because we have defined the multiplication of L, this is a
good quantity, The component form is

pm_n (t) = E Z (e-itL)mr\m‘n‘ pm'n'(o)

mt n¥
These are to be compared with the traditional forms
A(t) = e-itﬁﬁ(o) eHitH

P (D = 0 0 (&) g B 0) (7F) s

mi; ¥

so we see that

(ehitL)nmmvm= (e*™) e (eitH)nnv
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Let's verify the first power of t just for fun,

(LHS) = (1) momdwt = it Lianmtnt + ..o
6mmt Gnm - 1tHnmv 6nn'

+ it Ot H n + 0 (£2)

1l

Now do

RHS = (1 - 1tH) mmt (1 +itH)wn
- (Gmm' = ithm' + .. .)(6“]1' + itHn'n +. . .)

= §mm' 6nn' - ithm' 6nn' + it 6mxm Hn1n ke PP

So RHS = LHS to order t. Obviously this must be true to
all orders.
To go further, we can do perturbation expansions with
L A A oA
if H=THo +H, thenclearly

L = Lo + Ll
The operator e-!tL obeys the integral equation
t
e-itL _ g-itLo _ fodtl el(tt)Le 1, g-itL

which gives, on differentiation,

i -itL_ L -it L
X e ==1Le
as it should. We can use the integral equation by iteration

to get

¢
e-itLo g-itlo _ { fodtl et Lo T, @ -itiLy

+ ("i) 2 f dtl f dtze-i(t—tz)Lo Ll—i(tl-tz) Lo L 1e-itzLo

ete.

This is all just as one would do with Hamiltonian operators.
It has the advantage, however, that the perturbation comes
always in one place. Compare this with the expansion of
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the sfandard form

e it 5(0) e+iti{

where one gets H, on both sides of f(0).
But the real advantage appears in the resolvent form.
From

gs) = J dte™™ ()

we get

sg(s) - A(0) = - iL§(s)
'*Solve' this for g,
&(s) =
This is very much neater than the earlier

&s) = 5= $ dz R(z - 18)(0) R(2)

1
s+ il

£(0)

Note also that this connects with the formal solution:

0
- . 1
= sto-it L = ———
g é(s) - dete e ﬁ(o) - s +11,

A(0)

and we get this also by inverting the Laplace transform,
Finally, observe the identity .

R S 1
S+1(L0+L1)_S+iLo s+ iLio ! S+1(L0+L1)

which iterates to the perturbation expansion

_ 1 1 1
T s +iLo s+iLo ‘s +ile

1 1 1

U, - 3
srits Woarin Wogring - ok)

+ ()7

So much for the generalities of notation.
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LECTURE II

Part 2

Next, we consider the derivation of the master equation,

What we want is the diagonal part of the density matrix,
Let's introduce a projection operator D to select the diag-
onial part.

(Dﬁ)mn = pmm 6mn

This operation can be represented explicitly by a tet-
radic,

Dran'n' = Omm' Onn' Omn

which evidently has the desired character. Similarly, the
operator that selects the non-diagonal part is 1 - D, where

(1 - D)mnm'n' = 6mm' 6nn‘ (1 - Gmn),

Now we use D and 1 - D to separate the Liouville equa-
tion into two parts,

Dsg(s) - DO(0) = -iDLg(s)
(1 -D) sg(s) - (1 -D)p(0) =~i(1 - D) Lg(s)
For convenience in notation we write

8(s) =81(s) +ga(s)
g1(s) = Dg(s)
g2(s) = (1 - D)&(s)
Then the two parts of Liouville equation contain ¢, and §,,
$81(8) - p1(0) = -iDLg; (s) - iDLg; (s)
sg2(8) - P2(0) = -i(1 = D)g:(s)L - i(1 - D) Lz (s)
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Solve the second equation for gz
[s+i(1-D)L]gs =p2(0) - i(1 - D)Lg:

S G S
2" s+i(l-D)L"? s+1i(1l-D)L

(1 -D) Lg,
Put this back in the first equation,
sg1(s) +iDLg1 (s) = p1(0)

1

- iDL 2 +i(1 -D)L P2 (0)
1 “
DL+ pn (- D) Lg (s)

Note that the equation relates él (s) to itself and to both
initial parts.

Next we invert the Laplace transform. The only tricky
point here is that the inverse transform of a product is a
convolution,

by t
fo dte™®t [ dt, a(ty)b(t - &)
0

'] 0
= [dte"* a(t) -/ dt e *'b(tr)
0 0

So the equation for él gives

2,

L~ iprpy (1) - iDLe M By (0)

’ t t, ~
«-fo dty [DLe ™" P¥ (1 -D)L]py(t - ta)

The exciting thing here is that when the non-diagonal part
vanishes initially,

p5(0) =0




160 QUANTUM STATISTICAL MECHANICS

or the density matrix is initially diagonal, then we have an
equation that contains pyonly. Even though the non-diagonal
part will generally not vanish after t = 0 we don't have to
know what it is.

The quantity

g(t) - e-i(l-D)Lt
can be interpreted two ways:
(1) As the solution of

%% =-i(1 - D)Lg
and (2) by the expansion
g=1-i(1 - D)LD +i—;—(1 -D)L(1 - D)Lt? ..
The general master equation is therefore
%%LSQ: - iDL, (t) - fot dt: K(ty) 01 (t - t1)
when ,52 (0) = 0and
K(t,) = DLe "("DFt (1 - D)1,

Now we take components

<nlﬁ1(t) In >= pnn(t)
and

nn t . ~ & ~
d%t( ) o q[1(0)] - JatK(t)ps(t - 1),
The first part of the RHS vanishes, This is how;

[Lﬁl ]nn = Z ;Lnnab (bl)ab = »; Lnnaap aa
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But

Lipnaa = Hpa Ona - Ona Han
= (Haa = Haa) 6na =0
This gives:
t
9’%;-(—@- = - f dty [K(t) - pa(t - t)]an
4]
To finish this we write
[K * 51]1111 = E Z Kanca (ﬁl)cd
c d
= ZKnnmmpmm
Thus,

doua(t) _ ‘
T == Z;n fodt].Knnmmpmm

This is beginning to look like a master equation.
Lets work out K in detail, step by step

K numm (t) = [Le D5 (1 - D) L] nnmm
First, note that
[LX] nnmm = Z;Zl-lnncd Xcdmn

=ZZ Lomwd Xcdmm + ZZ Lxlmcd Xcdmm
look at the L° part,

ZZ(HOnc Gnd - Gnc H(?n) Xcdmm
= EZ(En One Ona = En One Gnd)Xcdmm =0

So only Ly appears, and
Konmm = [Ll e—it‘(lnD)L (1 - D)L]nnmm
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Coming in from the other end, we find

[(1 - D)L]abmm = (1 = 6ap) Liabmm

= (1 - &) (Libmm + Lisbmm)

The L, part vanishes,

Libmm = Ea Oam Obm = Eum Omb Oam = 0
This gives

Knomm = [L1e™ 0D (1 - D)Ly Jnomm

Note that it is formally of order A
Next we prove the sum rule

) Kanmm = 0 all n, all t

This is because of

Z Knnmm = ;;Zd: [Lle_itl(l—D)L (1 - D)]nncd * Lcdmm

= ;%}[Lle—itl(l—D)L (1 = D) ]nncd ° Z Lc:dmm

m

But

% Liogmm = )y Hom Oam * 2 00m Hma = Heg - Hea = 0

m m

The sum rule can be used this way:

Knn’ mm — Z Kanmm

ms=n

and

dPun (t) _
- =

m#n

- E fodthnn,mm(tl) [Pmm(tl)‘pnn (tl)]
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This begins to get very close to a master equation., If we
had symmetry of K, we could get even closer,
The symmetry

Knn,mm(t) = Kmm,nn (t)

follows easily from the structure of K, as is often observed
in such problems, in the absence of magnetic field. The
argument is as follows:

Note first that

Labcd = Hac 6bd - 5ac Hdb,
Licdap = Hea Oba = Onc Hpa,

so that

*
Lcd,ab = Lab,cd

But in the absence of magnetic fields (and spin effects) we

can always choose real unperturbed eigenfunctions. There-
fore it is always possible to have a representation in which
Hun is real, and

Licaar = Liaped

Next, we note that the unit tetradic and the operator D are
symmetric in the same way, e.g.,

Dabcd = Dcdab

But
K = DL, ¢ “(*"P¥ (1 _ D)L,
and each operator appearing with K is symmetric to the ex-

change of the left and right pairs of subscripts'. This K has
the same symmetry,

Knnmm = Kmman
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(This result should also follow from more elegant time-re-
versal arguments. We do not pursue this here.)
Now our almost-master equation can be written in the form

d_pgndt(_il=., fotdtl D) [Kan, men (1) P (£ = 1)

- Kmm, nn (tl)pnn (t - tl)]

The only extra feature we have here is the convolution over
time. This appears also in Van Hove's generalized master
equation, as well as in those of Resibois and Montroll.

Note that we do not have to bring in the symmetry of K;
there is no reason why we cannot keep it always as Konmm.

LECTURE I
The generalized master equation that was just derived
reduces, in the limit of weak interaction, to the Pauli master
equation, This can be seen in the following way.
The essential quantity is
Knnmm(t) = [Ll e-it(er)L (1 = D) Ll]nnmm

Note that L; is of order A, Let us take advantage of this
explicitly by exposing all factors A, or

L= Lo + )\.Ll
Then
Knnmm (t) - )\2 [L]_ e -it(1-D) (Lo +ALy) ( 1 . D) L]_ ]nnmm

Now we introduce a new time scale,

Mi=
Pun (t) = P(T)
Consequently,
8P, " At
DB (n)_ ) [ty [Ty MDD (1 - D)L,

X { Pu(7 - A%ty) -Bu(7 - A%ty)}
165
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(We have not bothered here to invoke the symmetry of K, )
Now we just boldly take the limit A «, for 7 fixed.
This gives

8Py (7)

[~ o]
ity (1-D Lo
2 =§ fodtl[Lle’ Lo (1 - D)Ly Janmm

x{Pu(7) - Pu (1)}

This limit is the same one used by Van Hove;

A=0
t o Mt = 7 = constant

In the limit, we can return to the original notation,

(8, L1 W [ O (£) -Pan (1) ]

where
[le]

Wam = =22 [ dt [Lye™ @D (1-D)Ly],
Because of the limit, the integrand here contains
exp - it(1 - D)Ly

where Lo is the unperturbed operator. This is a great con-
venience in continuing the calculation.

The simplification here is that D Lo vanishes;

(DL ) abea = Oan [Hee Gba - Bac Has |

= Bab [Ea Bac Ooa - Ep Oba Oac |

Therefore,

(1 -D) Lo = Ly
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and

e it(1-D)Lo  _ g-itLe

But this gives the unperturbed time displacement operator,
and we know how to handle it.
Recall from an earlier lecture that

( e -itL ) — =( e ~itH ) ! (e itH )nn'

For L = Lo, we get

-i ~itEn, itE,
(e itLo )mnm'n' =€ Omm' € Oon

=e -it(En-Ea ) 6mm' Gnn'

With this result we can work out all the operators in
Wom:

[+¢]
Wan = - A% dt )y (L) muay (€ 5% 500 6pq)
0

abed
( Ll ) edmm
Or,
w s
an = = >\2 f dt Z(Vna 6nb - 6na Vbn)e —‘t(EaaEb)
1] ab

X( Vam Opm ~ Oam Vmb )

1]
- A2 fdt Z {Vna Vam Oab Obm e-1t<Ea-Eb)
0 ab

+ Vin Vb Ona Oma © -it(Eq-Ea)
-~ Voa Vb Onp Sam€ -1t(Eq-Ey)

- Vbn Vam ana 5hm e-it(Ea-Ea)}
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[~}

=" }\2 f dt Z Voa Van Gnme—it(Ea'Em)
a

+ Z Vou Vab Onm € ~1t(Ep-Ep)
b

- Vam Vian € “H(Em-Ep)

- Van Vi e'it(Eh'Em)

Because we need in general only n # m, the first two terms
drop out. The second two terms combine to give

o0
Vom = + )\2 | Vam ]2 f dt I:e -H(Ep-Ep) + e ~it(E-Ep,)
4]

= 272 | Vam |2 6(Em - Ea )]

Which is precisely the Golden Rule formula.

Notice that a swindle has been perpetrated. Namely,
we come out with a delta function in energy, without also
introducing the concept of a continuous spectrum. For a
finite system (finite volume, finite number of particles) the
spectrum is discrete and the delta function as it appears
here is meaningless.

There are two ways out. One is to take the limit of
infinite system before taking the Van Hove limit

X = 0, t -, At = constant

This appears to provide the necessary continuous spectrum,

The other way out, which is actually more informative,
is to keep the finite system and to also keep t finite. Now
we have to return to the non-Markoffian equation, but as we
have already found K to the second order, we put it in,

t
dpnnd(t"t)= A% fo dts ) | Vam|? 2 OS( W t1)

x{ Pom(t = t1) = Pun (E = t1)} + 0 (X%)
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Recall that the quantum number n really refers to the
set of all quantum numbers needed to characterize the un-
perturbed state of a many-body system. The set n includes
the unperturbed energy and also various occupation numbers,
etc. Let's suppose that Vnm is a ''smooth' function of these
quantum numbers. Because

9P
ot

is proportional to the '"smooth' |V |?, we may also re-
gard Pnm''smooth, '’

But there is one term in the master equation that is not
smooth, "

cos(Wmn ty)

If E, is fixed, and we vary E,,, this will oscillate wildly
if t; is large. Because of the oscillations, the sum over m
will have a rather small value for large t;. On the other
hand, the sum will be large for small t;.

What is large and small in this context?

Suppose that a typical value of w,, , for states for

which Vom # 0, is about @,
Then large t; means

1
o> =

and small t; means

1

tl < o

As an example, consider the scattering process in which
two quasi-particles are annihilated and two others are creat-
ed. Then H@ is of the order of a typical quasi-particle
energy. For phonons in a crystal, @ would be of the order
of the Debye frequency. Anyhow, @ is typically of an atomic
order of magnitude, and not a macroscopic one. That means
the important time scale for the ""memory' t; is an atomic
time scale.
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Butinamany-body system, p(t) varies slowly with
time; its own characteristic time scale is a macroscopic
one~or at least one that is much longer than the previously
mentioned atomic time scale, In fact, the time scale for
p(t) is inversely proportional to A?, and this has nothing to
do with @. Thus, for small A, p(t) will hardly change at
all during the memory 1/@.

Because of this, we can safely approximate:

pnn(t = tl) = pnn(t) for t1 = 0(1/&_’)
and

t
3%1?(0 1 f dt, Zlvnml 2. coS Wmty
0 m

X{pmm(t) - Pnn(t)}

But now the t; integral can be done, giving

8Pnn(t)

Pmll o2 )] | Vir |2 2 SI0 Dnl
m

ot Wmn

X{pmm( t) - pnn(t) }

For very large t the quality

sin Wy, t
Wmn

looks very much like a delta function in w; its actual width
is of the order

width ~ 1/t.

We want to find many unperturbed states within this width,
8o that we can take limit of a large system with confidence.
In a many-body system the density of states is propor-
tioned to the size of the system (either number of particles
N or volume §2,
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The denisty of states is itself of order 1/® because a typical
Wnm is of order @. Therefore, the number of states in the
interval 1/t is

. 11
#int=0 (N 5 t>

and this should be much larger than 1 if we are to approxi-
mate &u_)@ by a delta function and still catch many states.

So, —;N— > 1 or

wt
t < N/@

This limitation is not serious: by making N large, we can
make the upper limit on t much larger than any time of
experimental interest. The point is that, although t cannot
actually become infinite as required in the Van Hove limit,
nevertheless, the finite system, having N particles, behaves
like the infinite system for a very long time. This is the
justification for using the combination of delta function and
continuous spectrum in the Pauli equation,

Finally, we note that the potential must have the prop-
erty

Z I-Vnml2 Xfm = O(NO)

m
as N -, Here f, is some arbitrary function of m. This re-
quirement is a special case of what Van Hove calls the ''diag-
onal singularity condition.'" Its consequence is that the transi-
tion rates Wmn are in fact independent of the size of the system-
that is, the W, are intensive and not extensive properties,
This expresses the macroscopic character of the processes de-
scribed by the master equation,

In the derivation that I have just given, this diagonal
singularity condition appears as a requirement that the re-
sults be physically sensible. In Van Hove's derivation, how-
ever, it is used to obtain the master equation in the first
place.

Swenson has shown how Van Hove's derivation can be
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carried out, like mine, without using the diagonal singular-
ity condition until the very end, and then only for obtaining
intensive transition rates,




